
SharkTeam: Move Language

Security Analysis and Contract

Audit Essentials — — The Replay

Attack

Feb 24, 2023



1

SharkTeam, a leading blockchain security service team, offers smart contract

audit services for developers. To satisfy the demands of different clients,

thesmart contract audit services provide both manual auditing and automated

auditing.

We implement almost 200 auditing contents that cover four aspects: high-level

language layer, virtual machine layer, blockchain layer, and business

logiclayer, ensuring that smart contracts are completely guaranteed and Safe.



2

In the previous series of “Top 10 Smart Contract Security Threats”, SharkTeam

summarized and analyzed the top 10 most harmful vulnerabilities in the field of

smart contracts based on historical smart contract security incidents.

These vulnerabilities usually appeared in Solidity smart contracts before, so

will the same harm exist for the emerging Move smart contracts?

SharkTeam [A Vulnerability Perspective Analysis of Move Language Security]

series of courses will discuss and deepen with you. The contents of this

chapter are 【Replay Attack】.

Replay Attack is a malicious or fraudulent means of repeating or delaying valid

data in traditional networks. It can be performed by the originator of a replay

attack or by an adversary who intercepts data and retransmits it in order to

deceive the system. This is a lower-level version of the “man-in-the-middle

attack” and is used primarily in the authentication process to undermine the

correctness of the authentication.

In blockchain, there are also replay attacks. In blockchain, the authentication

process is the process of digital signature verification, and each authentication

requires a new digital signature. An attacker may use a digital signature that

has already been used for authentication and successfully pass it, and we call

this attack method a replay attack in blockchain. In the following section, we

only discuss replay attacks in blockchain and their impact on the Move

ecosystem.

1. Classification of Replay Attacks

According to the replayed signature data and the different attack levels, we

classify the replay attack into transaction replay and signature replay.

Transaction replay refers to the reuse of transactions and their signatures to

put the transactions on the original chain into the target chain unchanged, and

then the transactions can be executed normally on the target chain and

complete the transaction verification after replay. Transaction replay is an

attack at the blockchain level, which is a cross-chain attack method of the



3

same ecology (such as Ethereum, BNB Chain, HECO Chain, etc. of Solidity

ecology).

Signature replay means replaying the private key signature in the transaction

data repeatedly, and the replaying process does not need to replay the whole

transaction like transaction replay, but replay the corresponding data and its

signature. Signature replay is a smart contract level attack, which can be a

replay within the same chain, a cross-chain attack of the same ecology, or a

cross-chain attack of signature-compatible public chains of different ecologies

(e.g. Ethereum of Solidity ecology, Solana of Rust ecology, Aptos of Move

ecology, etc.). Signature replay is more of a cross-chain attack of the same

ecology; replay within the same chain is relatively rare; and cross-chain replay

attacks of different ecologies require the most demanding conditions and are

the least likely, but there is no guarantee that they will never happen. For

hackers, whether they are project designers, developers, or auditors, they

should not relax their vigilance heart.

2. Security Incidents

2.1 Optimism replay attack Incident

On June 9, 2022, hackers successfully stole 20 million OP tokens granted to

Wintermute by the Optimism Foundation through transaction replay attacks.

The transaction replay attack process is as follows:

(1) On May 27, the Optimism Foundation transferred 20 million OP tokens to

Wintermute’s multi-signature contract address on Optimism/L2. The

multi-signature contract address is the multi-signature contract address of

Wintermute on Ethereum/L1, and the multi-signature contract has been

deployed. However, Wintermute does not deploy a corresponding

multi-signature contract on Optimism/L2.

(2) On June 1, the attacker deployed the attack contract.

(3) On June 5, the attacker created the Gnosis Safe: Proxy Factory 1.1.1

contract by replaying the transactions on Ethereum/L1, and its address was



4

the same as that on Ethereum/L1; then the attacker deployed multi-signatures

by attacking the contract Contract 0x4f3a, which is also the same address as

Wintermute’s multi-signature contract on Ethereum/L1, but the contract

ownership belongs to the attacker. At this time, 20 million OP tokens have

been transferred into the multi-sign contract.

(4) The attacker transfers 1 million OP to the attacker’s address through the

multi-signature contract 0x4f3a deployed by him, and converts 1 million OP

into 720.7 Ether.

The key to the success of the entire attack process is that the attacker used

the contract creation vulnerability in Solidity to create a multi-money contract

with the same address as the Wintermute multi-signature contract on

Ethereum/L1 through a replay attack. The ownership of the multi-signature

contract Owned by the attacker.

In the Gnosis Safe: Proxy Factory 1.1.1 contract, the code for creating the

proxy contract function createProxy is as follows:

The Solidity version used by the Gnosis Safe: Proxy Factory 1.1.1 contract is

0.5.3, and the contract is created by new. Here the opcode used by new to

create the contract is CREATE instead of CREATE2.

Use the CREATE opcode to create a contract, and the contract address is

calculated by the creator (contract creator address, that is, the current contract

address using the CREATE opcode) and nonce. On Ethereum/L1, the creator

who created the multi-signature contract 0x4f3a is the address of Gnosis Safe:

Proxy Factory 1.1.1. The main purpose of the attacker to create the contract in



5

Gnosis Safe: Proxy Factory 1.1.1 is to replay the transaction on Optimism/L2 It

is to ensure that the creator of contract 0x4f3a on Optimism/L2 is consistent

with Ethereum/L1. Then keep the nonce consistent with Ethereum/L1 through

transaction replay. Therefore, the attacker can call the createProxy function

through the smart contract (contract 0xe714) to create a multi-signature

contract with the same address (0x4f3a) as Ethereum/L1.

(5) On June 5, after receiving 20 million OPs, the multi-signed contract 0x4f3a

transferred 1 million OPs to the hacker address 0x60b2, and then exchanged 1

million OPs for 720.7 Ether.

(6) On June 9, the contract 0x4f3a transferred 1 million OPs to the account

address 0xd8da, and the other 18 million OPs are still in the contract 0x4f3a.

In summary, this security incident was caused by a combination of factors such

as transaction replay, differences between the old and new versions of Solidity,

and transaction signature verification on the main and side chains.

The Solidity opcodes CREATE and CREATE2 are introduced as follows:

(1) The CREATE operation code creates a contract, and the new contract

address is calculated as follows:

Hash(creator, nonce)

l creator: the address of the creator of the new contract, that is, the address of

the contract using CREATE

l nonce: the nonce value of the transaction that created the contract

Create a new contract using CREATE via new:

Contract x = new Contract{value: _value}(params)

The value is optional and refers to the sent ether.

(2) The CREATE2 operation code creates a contract, and the new contract

address is calculated as follows:

Hash(“0xff”, creator, salt, bytecode)

l “0xff”: a constant to avoid conflicts with CREATE



6

l creator: the address of the creator of the new contract

l salt: a salt value given by the creator

l bytecode: the bytecode of the contract to be deployed

Create a new contract using CREATE2 via new:

Contract x = new Contract{salt: _salt, value: _value}(params)

The value is optional and refers to the sent ether.

2.2 OmniBridge replay attack Incident

On September 18, 2022, the attacker transferred 200 WETH through the omni

bridge of the Gnosis chain, and then replayed the same message on the PoW

chain, obtaining an additional 200 ETHW.

In the same chain, we sort transactions by nonce to prevent transactions from

being replayed. On different chains, we will identify the type of chain according

to the chainid. For example, the chainid of the Ethereum mainnet is 1, and the

chainid of the ETHW mainnet is 10001. Embedding chainid in the transaction

can avoid cross-chain replay of the transaction. As for the signature, the

signature generally used for cross-chain verification will also include the

chainid to avoid cross-chain replay of the signature.

Ethereum enforced EIP-155 before the hard fork, which means that

transactions on the ETH PoS chain cannot be replayed on the PoW chain.

Therefore, this transaction replay is not a vulnerability of the chain itself.

Analyzing the source code of Omni Bridge, it is found that in Omni Bridge’s

chainid verification logic, the chainid comes from the value stored in

unitStorage, rather than the chainid on the chain directly read through the

opcode CHAINID (0x46).



7

After the hard fork of Ethereum, the chainid stored in the state variable is not

updated to the new chainid, so the signature before and after the hard fork can

be replayed. The attacker used this vulnerability to perform signature replay

and obtained an additional 2 million ETHW.

3. Risk Prevention

By reviewing the attacks that have occurred, the root cause of both transaction

replay and signature replay occurs due to the lack of uniqueness verification in

the signature’s verification mechanism. The replay attacks can be prevented

by simply adding unique identifiers to the signature and verification

mechanisms.

According to the different levels of replay attacks, the uniqueness identifiers

include 3 types, namely

(1) The uniqueness identifier chainid (public chain ID) at the public chain level,

and the verification of chainid can prevent replay attacks across chains (refer

to EIP-155).

(2) The unique identifier nonce (transaction sequence number) at the

transaction level, and the verification of nonce can prevent replay attacks on

the same chain.

(3) Unique identifiers at the contract level, i.e., custom business identifiers,

such as custom sequence numbers, and verification of custom business

identifiers can prevent signature replay attacks on the business side of the

contract.

For the contract level, in addition to adding unique identifiers in the signature

and verification mechanism, we can add signature verification records, such as

using mapping to record the verification results of each unique signature.

4. Risk Analysis of Move Replay Attack

Replay attack is an attack method based on signature mechanism. Unlike

Ethereum, which only supports ECDSA, a signature scheme, the Move



8

ecosystem supports multiple signature mechanisms, especially at the contract

level, and supports signature algorithms commonly used in blockchains,

including the ECDSA signature scheme based on the Secp256k1 elliptic curve

(Ethereum’s unique signature scheme ), single-signature scheme and k-of-N

multi-signature scheme based on Ed25519 elliptic curve, BLS12–381

aggregate signature scheme, and even zero-knowledge proof schemes such

as Groth16.

The Aptos public chain transaction signature supports the EdDSA

single-signature scheme and the k-of-N multi-signature scheme based on the

Ed25519 elliptic curve, and the single-signature scheme is selected by default.

The contract level supports the verification of four signature mechanisms:

(1) ECDSA signature verification based on secp256k1 elliptic curve

(2) EdDSA signature verification based on Ed25519 elliptic curve

(3) k-of-N EdDSAmulti-signature verification based on Ed25519 elliptic curve



9

(4) Verification of bls12–381 aggregate signature, multi-signature signature

and single-signature signature

The Sui public chain Move contract also supports the above 4 types of

signature verification, in addition to range proof verification and Groth16

zero-knowledge proof verification.



10

Move public chain supports multiple signature verification mechanisms to

facilitate the cross-chain transfer of assets at the contract level, which is

beneficial to the occurrence of Move ecology. When using signatures to

achieve cross-chain, it is also necessary to strictly prevent signature replay

attacks, especially the interaction between on-chain and off-chain data and the

signature and verification at the business contract level, which should be

treated with caution to avoid replay attacks on business data signatures at the

contract level of the same chain or cross-chain.

About SharkTeam

Our vision is to improve security globally. We believe that by building this

security barrier, we can significantly improve lives around the

world.SharkTeam composes of members with many years of cyber security

experiences and blockchain, team members are based in Suzhou, Beijing,

Nanjing and Silicon Valley, proficient in the underlying theories of blockchain

and smart contracts, and we provide comprehensive services including threat

modeling, smart contract auditing, emergency response, etc. SharkTeam has

established strategic and long-term cooperations with key players in many

areas of the blockchain ecosystem, such as Huobi Global, OKX, polygon,

Polkadot, imToken, ChainIDE, etc

Twitter：https://twitter.com/sharkteamorg

Discord：https://discord.gg/jGH9xXCjDZ

Telegram：https://t.me/sharkteamorg

web：https://www.sharkteam.org/



1

北 京 · 苏 州 ·南 京 · 广 州 · 成 都

https://t.me/sharkteamorg

https://twitter.com/sharkteamorg

https://sharkteam.org

https://shark

