A Vulnerability Perspective Analysis
of MovelLanguage Security ——

ProposalAttack

Dec 12, 2022

@ SharkTeam

SharkTeam, a leading blockchain security service team, offers smart contract
audit services for developers. To satisfy the demands of different clients,
thesmart contract audit services provide both manual auditing and automated
auditing.

We implement almost 200 auditing contents that cover four aspects: high-level
language layer, virtual machine layer, blockchain layer, and business

logiclayer, ensuring that smart contracts are completely guaranteed and Safe.

@ SharkTeam

In the previous “Top 10 Smart Contracts Security Threats” series, SharkTeam
summarized and analyzed the top 10 vulnerabilities in the smart contract space
based on historical smart contract security incidents. These vulnerabilities were
usually found in Solidity smart contracts before, so will they be the same for
Move smart contracts?

The SharkTeam [Move Language Security Analysis and Contract Audit
Essentials] course series will take you step-by-step into the content, including
permission vulnerabilities, re-entry vulnerabilities, logical checksum
vulnerabilities, function malicious initialization, fallback attacks, manipulation of
the prophecy machine, contract upgrade vulnerabilities, sandwich attacks,

replay attacks, and proposal attacks. This chapter covers [proposal attack].

1. Introduction to Proposal Attack

The proposal attack targets decentralized autonomous organizations (DAOSs).
In DAO, participants will put forward a series of proposals on future protocol
upgrades, fund management, etc. In order for a proposal to take effect,
accounts holding governance tokens need to vote on it. DAO’s governance
tokens represent the number of votes cast. Holders of governance tokens have
DAO'’s governance authority and can participate in a series of activities such as
proposal initiation, voting, and execution. The more governance tokens you

hold, the greater your authority, and even affect the degree of decentralization.

While proposal governance is good for building a decentralized future, it also
has some drawbacks. Users with a small proportion of governance tokens have
little influence on the decision-making of proposals. DAO’s governance is
passive and negligent and their participation is low. Users with a high
proportion of governance tokens will actively participate in governance and
have little influence on proposal decisions. If it is large, it will even take the
initiative to acquire the governance tokens held by passive people, which

2

@ SharkTeam

further leads to the centralization of voting rights in the DAO and turns to serve
the interests of a few people. Users holding more governance tokens have

excessive voting rights.

When a user’s voting power exceeds the voting threshold, the submission and
execution of the proposal can be decided by a single user, which completely
violates the intention of DAO. This constitutes a prerequisite for a proposal
attack when a proposal can be decided by a single user, and at the same time

that user can be the attacker who initiates the proposal attack.

In DAO, the attacker holds absolute voting rights for a long time or temporarily,
and then initiates and executes illegal proposals, harming the interests of
others and benefiting himself. This behavior is called proposal attack. For
example, Beanstalk Farms and Fortress Loans in the Solidity ecosystem have

both suffered proposal attacks.

2. Attack on Beanstalk Farms

Beanstalk Farms, an algorithmic stablecoin project on Ethereum, was hacked
on April 17, 2022 and lost more than $80 million, including 24,830 ETH and 36
million BEAN. The complete attack process and transactions of this event are

as follows:

The key process for the attacker to initiate the voting and execution of the

proposal by attacking the contract is as follows:

(1) Through flash loans, adding liquidity and token exchange, the attacker
obtained a large amount of governance tokens, totaling 58,924,887

BEAN3CRV-f

(2) Use all the BEAN3CRV-f obtained above to vote on the proposal, so that

the proposal is passed and implemented.

 Execulion o) Function Trace X

— WOE
bBalance R ooty
4+ isMominaved
* ishiive
wored
— _wone
recorclote
bsksnce oo
il

= placevorediimd

@ SharkTeam

After the implementation of the proposal, the attacker obtained 36,084,584
BEAN, 0.5407 UNI-V2, 874,663,982 NEAN3CRV-f and 60,562,844
BEANLUSD-f

(3) Remove the liquidity to obtain the tokens in the trading pair, then return the
amount of the flash loan and the handling fee, and donate 250k USDC to
Ukraine Crypto Donation.

(4) Convert the remaining Tokens to WETH to withdraw the resulting 24,830

WETH and transfer it to the attacker’s address to complete the attack.

In this proposal attack, the attacker obtained a large number of governance
tokens through flash loans, and stole absolute control in the DAO, that is, the
proposal can be passed and executed without the need for other people to vote.
This makes the adoption and execution of the illegal proposal InitBip18
submitted by it can be decided by the attacker’s own vote. In the end, the illegal
proposal InitBip18 was successfully implemented, allowing the attacker to

obtain a large amount of illegal income.

3. Fortress Loans attack incident

Binance Smart Chain’s Fortress Loans was hacked on May 9, 2022. The attack
caused the project party to lose 1048.1 ETH and 400,000 DAI. The event attack

process and its transactions are as follows:

e T T 492 dmys 12 ogo Foiress Protoool Espioier i B Dl S el 08ha
28] 297 dwen 12 hmoape Frorwes Proinesd Eepinder ir B Zreertl A P Fa a4 o fkifi
| Srialect 0 it g s) 272 dwan 12 o Foawes Prolocal Expinder [=Th Croder MNetwrre cllriy OHNA
| = g
| s 1THMTON 202 dies 12 hiw spe Fotess Proloos] Exploler sl BBLAD. iy oana
| Trwiwlid USDT 1o Erfustaim wis orosd-ohan Deige
| ey S Ot el ¥ 292 deve 12 hiw ago Foiess Profoool Expioilod T B oS S 1 oana
o T Z92dmys 12hm gy Foress Protogol Expindes sur RS0 T Shbiscs ooHE
Themifibaem 1 BEIGEA §93dma 12hmuge Fovess Prolocod Espode G0F 0 Peecaknbmen Mode o2 GBNE
Whitairee sl iokons then taop e io USOT
Bpils VR ok ITAMETY 292 dins 12 his age Foess Prodosol Exploie [T By Cremsl) 7LD TRLFAG 1 [
| WD 1R 1 it 1R 292 doys 12hs apo Foress Proipool Explode Ut Bl Deod) ITHEC0TaRrRE 14 o8N
i Deisfsnas Phellalont d [ERTTE PIASAEIE 392 deps 12 hre ago Fovwes Proinosd Espinder (- TLA BT ok p v By Ee s DUE LT
Tiarssas ETE I3 dirn 12w uge Fotress Prolocsl Exploie T H bbwra DAL MAHA Tk 0 ENE

B Far Priod FTET aNa

| Dinet 22T ol St B S Trarmie 1TAMESE BA2 daes 12 hie apo Foress Prolpe.
sty 1em ¥ LTt
| IR RRInZAET Tt PR I TOS0ED 292 dares 12 e ogo Fowess Protnonl Espinie o S Conired Graaior 08NS

The key attack process is as follows:

txHash: 0x13d19809b19ac512da6d110764caee75e2157ea62cb70937c8d9471afch061bf

(1) The attacker contract calls the Fortress governance contract to execute the
proposal with 1d=11. The content of the proposal with Id=11 is to set the

mortgage factor of fToken to 7000000000000000000.

(2) After modifying the mortgage factor, the attack contract calls the submit
function of the Chain contract, modifying the state variables in it further affects

the price calculation of the price oracle.

The submit function is as follows:

114 - - [uint256 i = @; I « _Keys.length; d++) {

115 reg ir:iairtézd:_tulle5fi:] == walues[i], "F owerflow"):

116 [_keys[i]] = FirstClassDeta{uint22&(_wval 3, _detaTimestanp);
117 mony = abl.encodePacked(testimony, _keys| _values[il);

118 }

119

128 bytes32 affidavit = keccek256(testimony); modified state variables to update the price
121 vintl56 power = @;

o

Al

123 d = stakingBank.totalSupply();

124 vaigner = address{axd):

125

126 uintd56 i = 8;

127

128 - for (: 4 < _w.length: i++)

Eﬂér:ii

5 11)3]

signer = recoverSigner{affidavit, _w[i], _r[1], _s[

138 vintish
i3l
132 require(
133 previign
134 i {bala
135
138

emif Loghvoter{lestBlock]d

belance = stokingbank.balancedf (signer);

h]

previigner < signer, “validator included more thon once”);
¢r = signer; The number of signer is checked
DER =) e while the signer itseit 1s not checked

r i SAENEC,

balancali

137 |sc":' #= balence; need Ft f fr s € £ £ -
138 1 f
E?Q ¥
142 | reguilre{i »= requiredSignatures, "not enough signature il
141 I S— aue proper 15
: | ") o # - 5 — J
4] { { ya= : i
143
- squashedRoots[1astBlockId + 1] = _root.makeSguashedRoot{_dataTimestamp); Y
R L 5]
AL blocksCount++ - - fl " ! ¥
x . ' power is calculated only but not checked

147 emit Loghd
1243)

The reason wh

nt{msg.sender, lastBlockId + 1, staked, power);

y the state variable fcds can be successfully modified here is

that the verification of the signer itself and the verification of the power are

missing in the s

ERECUTE
submit
gealinderhyingPrice
L
— gedPrice
- gerUmbrellaPrice
— ihadn
petAduress
EerlurrentValue

& o

« @
+ B

Approes

Ballarncar (OF

& mint

* B

ubmit function. The function to read the price is as follows:

172 function getCurrentValues (bytes32[] calldata keys)
173~ external view returns {uint256[] memory values, uint32[] memory timestamps) {
174 timestamps = new uint32[){_keys.length);

175 values = new ulnt256[](keys.length);

176

177 ~ for (uint j=8: i< keve Jenpth: j++1

178 FirstClassData storage numericFCD = foas[keys[ill:
179 values[i] = uint256(numericFCD.value};

18@ timestamps[1] = numerlcFCD.dataTimestamp;

181 }

182 }

Because the state variable fcds is modified by calling the submit function, the

price in the price oracle is finally modified.

(3) After completing the above modifications, the attacker borrowed a large
number of other Tokens from the lending contract, and then converted them all

into USDT.

The creation, voting and execution process of the proposal with Id=11 in the

attack is as follows:

<a> May 3rd, create a proposal,

 On May 6, after the proposal passed 2 votes, the queue function was

called to add it to the execution queue.

=

- function guewsluint propossilc) pueiic o
123 irel i VTN 1 “GowernorAlphaligesue: proposal can oaly be gueued iF it is spcceeded”];
124 Progosal storage prof sals[proposalld])
155 LT P A A e Y - s Tt Y
185 = far | X2 Ffemction st int proposalld) public vies returss {ProposalStste) {
187 {133 require{proposaliowat »= sroposalld R proposalld * @, “BovernorAlpha!:state! isvalid groposal Ld™);
14 1 =k P it i3 1= pr o ailal:
¥ oropal 135= If (orepassl.canceled) |
129 it | 4M return Froposelitate. Canceles;
154 3 7= } mlse iF (slock.member <s proposal, stertBlock) {
3 2 238 n ProposelStste.Pending;
function guorumdotes] ag- e (tlock.nusber <= proposal.ensSlock) {

réturn ProposalState. Actives
} eisa if (groposal.forvetes - peoposal agaisstvoter ||[propesal.forvates « quorusiotes() {

A gnotice The rusbd DEj =

funstlon gropoialThid 243 return froposaltate.Defeates;

ot B b else if (propossl.ete ww 8) o
A @nptice The woxid 244 turn FroposalState.Succesded;
functlon proposalMami Jac- T E1cE LT LoroposBl.executed] |

45 return ProposalState.Executed)
gk i
ol 18 £#7 pnotice The member of votes in suseert oF @ progesol regeired in o or 3 guorum to be repched ond For @ vobe te succoed

I5 guorumiiotes{} public pure returns {uirt) { return|s AF AP9. 803 = £X of FTE
S -y '3 TETUTT OISR THTE QIEUEDE
- 251 I
253 F,

@ SharkTeam

The number of votes supported here only needs to be no less than 400,000
FTS, and the votes can be added to the execution queue for execution. The
total number of votes for the two votes is 296,193 + 119,774 = 415,917 FTS >
400,000 FTS, and eta is always 0, so the status of the proposal should be

Suceeed and can be added to the execution queue.

In addition, the voting FTS was obtained from the Ethereum account through
the cross-chain protocol Celer Network by the attacker’s account (on April 19th).
Due to the low price of FTS, the attacker actually exchanged more than
400,000 FTS (actually 400,413 FTS) with only 9 ETH, completing the entire

attack process.

<c> On May 8, vote to implement the proposal to implement the proposal

attack.

In this proposal attack, the price of DAO’s governance tokens was extremely
low, and the attacker exchanged only 9 ETH for governance tokens exceeding
the DAO voting threshold (400,000). This allows the proposal initiated by the

attacker to pass and then be executed only by the attacker himself voting.

4. Proposal attack analysis in Move

Proposal attacks occur in DAO, and all projects that apply DAO may have
proposal attacks, regardless of the development language. Therefore, in the

Move ecosystem, projects using DAO also need to beware of proposal attacks.

Through two events in the Solidity ecosystem, we found that a necessary
prerequisite for launching a proposal attack is to obtain a large number of

voting rights. Attackers can obtain governance tokens exceeding the voting

@ SharkTeam

threshold through loans, flash loans, token exchanges, etc., or obtain votes by

bribing other users who hold a large number of governance tokens.

Projects that are wvulnerable to proposal attacks are more prone to

centralization of their governance tokens:

(1) Obtain governance tokens exceeding the voting threshold through flash

loans;

(2) Governance tokens are cheap, and attackers can obtain governance tokens

that exceed the voting threshold by paying a small amount of value;

(3) Governance tokens are concentrated in a small number of users. Only a
very small number of users (such as 2 users) need to participate to obtain votes
exceeding the voting threshold. Attackers can bribe other users to obtain votes

exceeding the voting threshold.

Projects that apply DAO should avoid the above situations as much as possible,
and ensure that only a majority of participants vote to pass the proposal, so as

to avoid proposal attacks.

Token’s decentralized governance, that is, DAO is an indispensable part of the
blockchain, and it is also the development trend of blockchain projects and
token management. For example, Starcoin has a built-in implementation of the
DAO module in its standard library, through which various parameters on the
chain can be voted and governed. For various other projects, such as
decentralized exchanges, etc., if DAO is used to implement token governance,

it is necessary to consider how to avoid proposal attacks.

10

@ SharkTeam

About Us

Our vision is to improve security globally. We believe that by building this
security barrier, we can significantly improve lives around the world.SharkTeam
composes of members with many years of cyber security experiences and
blockchain, team members are based in Suzhou, Beijing, Nanjing and Silicon
Valley, proficient in the underlying theories of blockchain and smart contracts,
and we provide comprehensive services including threat modeling, smart
contract auditing, emergency response, etc. SharkTeam has established
strategic and long-term cooperations with key players in many areas of the
blockchain ecosystem, such as Huobi Global, OKX, polygon, Polkadot,
imToken, ChainIDE, etc

11

a

In Math, We Trust!

@ https://sharkteam.org

4 https://t.me/sharkteamorg

, https://twitter.com/sharkteamorg

https://shark

	1. Introduction to Proposal Attack
	2. Attack on Beanstalk Farms
	3. Fortress Loans attack incident
	4. Proposal attack analysis in Move
	About Us

