
Move language security analysis

and contract audit points Fallback

Attacks

Dec 2, 2022



1

SharkTeam, a leading blockchain security service team, offers smart contract

audit services for developers. To satisfy the demands of different clients,

thesmart contract audit services provide both manual auditing and automated

auditing.

We implement almost 200 auditing contents that cover four aspects: high-level

language layer, virtual machine layer, blockchain layer, and business

logiclayer, ensuring that smart contracts are completely guaranteed and Safe.



2

In the previous “Top 10 Smart Contracts Security Threats” series, SharkTeam

summarized and analyzed the top 10 vulnerabilities in the smart contract space

based on historical smart contract security incidents. These vulnerabilities were

usually found in Solidity smart contracts before, so will they be the same for

Move smart contracts?

The SharkTeam [Move Language Security Analysis and Contract Audit

Essentials] course series will take you step-by-step into the content, including

permission vulnerabilities, re-entry vulnerabilities, logical checksum

vulnerabilities, function malicious initialization, fallback attacks, manipulation of

the prophecy machine, contract upgrade vulnerabilities, sandwich attacks,

replay attacks, and proposal attacks. This chapter covers [fallback attack].

Fallback is a mechanism on the blockchain, whether it is a simple transfer

transaction or dealing with some more complex logical contract calls, once the

transaction fails, the blockchain will revert to the state before the transaction.

Fallback attack refers to deciding whether a transaction is executed or not

based on the operation result, and if the operation result does not meet the

attacker’s expectation, the attacker will make the transaction fallback.

I. Fallback Attack in Solidity

In Solidity, the reason for the fallback attack is that Solidity provides functions

such as require, assert, revert, etc. for judging conditions, and the attacker can

use these functions in the contract to determine whether the result of the

execution of the calling function is what he expects to get (to his advantage) if

so, the transaction will continue to be executed; otherwise, the fallback, that

aborts the execution of the transaction and restore the blockchain state.

From the above reasons, it can be seen that an attacker needs to satisfy 3

conditions to launch a fallback attack.

1. randomness. The attacker initiates a transaction, accesses a function in the



3

contract, and the execution result should have randomness. If the result of each

call is the same or the impact on the attacker is the same, there is no need to

launch the attack. Because launching a fallback attack will also only cause

more damage (extra Gas cost) and no more gain.

2. profitable. Among all the random results, different results have different uses

for the attacker, and there exists a certain result that is the most profitable for

the attacker. If all outcomes are unfavorable to the attacker, the attacker

launching a fallback attack will only cause greater losses (additional Gas costs),

which will necessarily not be what the attacker wants.

3. contract access contract. The attacker needs to customize the logic of the

attack contract, call the function in the target contract in the attack contract, and

then determine whether to continue execution or fallback based on the results.

If the EOA account to mobilize the function in the target contract, the result can

not be determined in the execution of the transaction, only after the transaction

is completed to access the results, when the transaction has been completed,

the blockchain state has been updated, it can not be rolled back.

Satisfying the above three conditions creates the possibility for an attacker to

launch a fallback attack. Understanding the root causes and conditions of

fallback attacks makes it easier to defend against fallback attacks during

contract development. In Solidity smart contracts, the most common means of

defense is to restrict the contract access to the contract, that is, the contract

function related to randomness using modifiers to restrict the caller address,

allowing only the EOA account call, not allowing the contract call. The following

are two implementations of the modifier:



4

Among various types of ecological projects, GameFi projects are more

vulnerable to fallback attacks because there are more scenarios in GameFi

projects where randomness is applied to increase the user experience, for

example, CryptoZoan and CryptoZoons are two GameFi projects that have

suffered from fallback attacks.

II. CryptoZoan Security Incident

CryptoZoan is a GameFi project on top of the Coin Smartchain (BSC) focusing

on NFT gameplay and experience, aiming to create a new financial system that

combines blockchain and gaming, allowing users to earn while playing. The

game enhances the user experience by incorporating a randomization

mechanism that allows users to hatch in-game “eggs” to obtain ZOANs, which

are randomly assigned a rarity level upon hatching and are attached to that

rarity level for life. There are six rarity levels, with level 1 being the lowest and

level 6 being the highest, and the higher the level, the higher the value.

The attacker uses a combination of randomness and fallback to make the

attacker’s hatching request get the desired result (a rank of 6), destroying the

fairness of the game and allowing the attacker to gain the highest benefit.

The attack process is as follows.

(1) Granting authorization to the attack contract for the egg NFT to be hatched.

(2) Call the attack contract to trigger the evolveEgg(uint256) function.

(3) check the rarity, if the rank does not meet the expected (rank 6) then



5

perform a rollback; (may consume Gas cost, need to weigh the choice to

continue.)

(4) Remove the high rank pet with rank 6.

The attack contract code is as follows:

III. CryptoZoons security events

CryptoZoons are tasked with fighting monsters. Players first select the

creatures they want to use in battle and equip them with weapons by

purchasing these items at MarketPlace. The player will pay a little BNB gas

price to fight against the selected enemy, while the winning side will receive a

certain number of tokens.

It is the fallback mechanism in the contract that allows the attacker to determine

whether or not he has won by the balance at the end of the battle. In case of

victory, the transaction is sent for normal execution; in case of failure, a rollback

is performed.

The attack process is as follows.

(1) the pet NFT approved authorization to the attack contract.

(2) call the function in the contract to trigger the battle.

(3) check whether the tokens are increased (whether the battle is won).

(4) If the battle fails, the transaction is rolled back; if the battle is won, the

transaction is sent and executed.

The attack contract code is as follows:



6

IV. Fallback attack in Move

The above analysis shows the three necessary conditions for the fallback

attack: randomness, profitability, and contract access to the contract. Among

them, randomness and profitability are business-level requirements, while

contract access to the contract is a code-level requirement. Compare the Move

contract with the ecology, which also has ecologies such as NFT and GameFi,

and also uses randomness. In addition, functions in Move contracts are

generally callable by contracts (modules and scripting programs). Therefore,

the conditions for fallback attacks may also exist in Move contracts.

To address the fallback attack in the Move ecology, we propose the following

two ideas.

(1) Do not allow contracts (modules and scripts) to be called, similar to how

only EOA accounts are allowed to be called in Solidity. In Move, the entry

modifier is intended to allow module functions to be called safely and directly

like scripts. This allows module writers to specify which functions can be entry

points for starting execution. If the entry modifier is private, the function cannot

be called by modules and scripts and can only be the entry point to start

execution, i.e. it can only be called by command or SDK, etc., and the

transaction execution is complete when the returned result is obtained after the

call and cannot be rolled back.



7

(2) Add time lock. After submitting a transaction, the result cannot be read

immediately, but needs to wait for a certain period of time, i.e. adding time

locking, such as using a transaction buffer queue, which requires waiting for a

certain period of time (e.g., a block of time) after the transaction is submitted

before it can be executed. Consider also that the execution results of a

transaction are not allowed to be queried immediately after the transaction is

executed, but need to wait for time locking. Doing so would ensure that the

result cannot be determined in the transaction that calls the function, and would

no longer constitute a condition for a fallback attack.

About Us

SharkTeam’s vision is to fully secure the Web3 world. The team consists of

experienced security professionals and senior researchers from around the

world, well versed in the underlying theory of blockchain and smart contracts,

providing services including smart contract auditing, on-chain analysis,

emergency response, and more. We have established long-term partnerships

with key players in various areas of the blockchain ecosystem, such as

Polkadot, Moonbeam, polygon, OKC, Huobi Global, imToken, ChainIDE, etc.

Twitter: https://twitter.com/sharkteamorg

Discord: https://discord.gg/jGH9xXCjDZ

Telegram: https://t.me/sharkteamorg

https://twitter.com/sharkteamorg
https://discord.gg/jGH9xXCjDZ
https://t.me/sharkteamorg


1

北 京 · 苏 州 ·南 京 · 广 州 · 成 都

https://t.me/sharkteamorg

https://twitter.com/sharkteamorg

https://sharkteam.org

https://shark

	I. Fallback Attack in Solidity
	II. CryptoZoan Security Incident
	III. CryptoZoons security events
	IV. Fallback attack in Move
	About Us

