
A Vulnerability Perspective Analysis

of Move Language Security——

logic verification Vulnerability

Nov 18, 2022

1

SharkTeam, a leading blockchain security service team, offers smart contract

audit services for developers. To satisfy the demands of different clients,

thesmart contract audit services provide both manual auditing and automated

auditing.

We implement almost 200 auditing contents that cover four aspects: high-level

language layer, virtual machine layer, blockchain layer, and business

logiclayer, ensuring that smart contracts are completely guaranteed and Safe.

2

In the previous series of "Top 10 Smart Contract Security Threats", SharkTeam

summarized and analyzed the top 10 most harmful vulnerabilities in the field of

smart contracts based on historical smart contract security incidents.

These vulnerabilities usually appeared in Solidity smart contracts before, so

will the same harm exist for the emerging Move smart contracts?

SharkTeam [A Vulnerability Perspective Analysis of Move Language Security]

series of courses will discuss and deepen with you. The second lesson [Logic

verification Vulnerability].

1 Logical verification vulnerability

The business-related logic design of smart contract development is complex,

involving many economic calculations and parameters, and the composability

between different projects and protocols is extremely rich, difficult to predict,

and very prone to security vulnerabilities.

In Solidity smart contracts, we summarize four types of logic verification

vulnerabilities:

(1) The return value is not verified

(2) Unverified related calculation data formulas

3

(3) Unverified function parameters

(4) Unregulated use of require verification

Similarly, we will analyze whether there are these logic verification loopholes in

the Move contract from these four aspects, as well as their possibility and

harm.

1.1 Return value not verified

If the return value of the message call is not checked, even if the called

function returns an abnormal value, the execution logic will still continue, but

the function call does not implement the correct logic, which will cause the

entire transaction to not get the correct result, or even It will threaten the

security of digital assets.

For example, the call function in the Solidity contract, the

functionCallWithValue function is as follows:

The call function is called in the code. If there is an accident in the execution of

the call function, such as a transfer failure, the return value success is false. If

the return value is not verified, even if success is false, the transaction will still

be executed normally. It's just that this transfer in the transaction didn't work

out. Here, the success is verified by require, and if it is false, the transaction

will be rolled back (revert).

The call function is a key function of Solidity's dynamic function call, and it is a

typical representative of the Solidity language level that is prone to loopholes

due to return values. In addition to the call function, at the business level,

Solidity contracts often use return values to determine whether the function is

4

executed successfully, such as the functions in the ERC20 contract:

For such functions, it is generally necessary to verify the return value during

practical application, otherwise loopholes will be generated, and even the

security of digital assets will be threatened.

In addition, according to the actual business logic, the function will return some

data required by the business. These data also need to be verified according

to the business to further ensure that no accidents occur in the function call,

including but not limited to the type, length, and range of the return value. For

example, in the above functionCallWithValue function, the

verifyCallResultFromTarget function is mobilized to verify the return value. It

not only checks the return value success, but also checks and processes the

length of retrundata.

From the language level in the Move contract, due to its static call

5

characteristics, there is no situation similar to the call function in Solidity that

needs to verify the return value. Even if it is necessary to verify whether the

function is executed correctly, it is generally used in the spec module. The

specification language is verified in Move Prover, and the transaction will be

aborted if the verification fails.

From a business perspective, the spec module in the Move contract can also

verify the modification of the global data by the function. In addition, unit test

functions can be written in the contract to directly perform unit tests on

functions to ensure the correctness of function execution. Therefore, the

Boolean variable indicating whether the function execution is successful or not

is generally not used as the return value. Therefore, the return value of the

Move function is mostly actual business data. Whether it needs to be verified

or not needs to be determined according to the actual business needs. Test,

such as the liquidity function in DEX:

The order of X and Y is different, and the balance that needs to be accessed is

also different, and order!=0 needs to be checked.

In general, the static call feature of the Move language, spec modules, and unit

tests have greatly improved the security of functions, which is much better than

Solidity. However, it does not rule out that the function will have a loophole

because the return value is not verified. Therefore, developers need to be

more familiar with business and implementation logic, and they need to be

cautious when developing.

6

1.2 Unverified related calculation data

In the process of contract implementation for related businesses, considering

the situation is not comprehensive enough, the corresponding business

economics formulas and calculation data are not correctly verified, resulting in

poor fault tolerance of the contract for special calculation data. for example:

(1) XCarnival security incident

The incident occurred on June 24, 2022, when the NFT lending protocol

XCarnival was hacked, resulting in a loss of approximately $3.8 million.

The root cause is that the orderAllowed function called by the borrowAllowed

function of the controller contract is incomplete in the verification of the data

structure order. It only verifies that the order exists, the address is correct and

has not been liquidated. It does not verify whether the NFT in the order has

been withdrawn, even if the order The NFT in has been extracted, and the

order verification can still pass.

(2) Fortress Loans security incident

The incident occurred on May 9, 2022. Fortress Loans was hacked and lost

1048.1 ETH and 400,000 DAI.

7

The root cause is that although the submit function verifies the number of

signers, it does not verify the signer itself and the calculated data power.

This allows the attacker to call the submit function to modify the state variable

fcds, and finally modify the price in the price oracle.

In the end, the attacker used this vulnerability to steal 1048.1 ETH and

400,000 DAI.

There are many similar security incidents, all of which are caused by the lack

of data structure for the economic model or the lack of verification of the

calculated data inside the function. This type of vulnerability is caused by the

fact that the project design and development did not take into account all the

circumstances, and its severity varies, and serious ones may even bring great

8

economic losses to the project, just like the security incident above.

When the Move contract implements various projects, it is also difficult to

guarantee that such problems will not occur, especially for new projects. It is

hoped that these security incidents that occurred in the Solidity smart contract

can give Move developers some warnings, and try to avoid security holes as

much as possible during the development process.

1.3 Unverified function parameters

When a function receives parameters it does not automatically verify that the

input data attributes are safe and correct. Therefore, when the function is

implemented, the parameters need to be verified according to the business

needs. If the verification is missing and the latter verification does not meet the

business needs, it will cause loopholes and even threaten the security of digital

assets.

Take the Superfluid.Finance security incident as an example. The incident

occurred on February 8, 2022. The DeFi protocol Superfluid on Ethereum was

hacked and lost more than 13 million US dollars.

The root cause is that there are serious logic loopholes in the Superfluid

contract. The callAgreement function lacks verification of parameters, which

allows the attacker to replace the ctx data constructed by the contract with

custom ctx data, which provides an opportunity for the attacker to launch an

attack.

9

In the development of Move contract, it is more necessary to verify the

parameters. In Move, the parameters of the function are not only the data

required by the business, but also the data required by the authority, such as

signer. Move does not have a global variable like msg.sender in Solidity. The

authentication of permissions in Move is realized through parameters. For

example the following function:

10

The account parameter in this function is the originating account of token

casting, which must have the authority to mint coins, that is, MintCapStore,

similar to the msg.sender in Solidity must be the owner. If this part of the

verification is missing, the token can be minted by any account.

In addition, the types of projects in the Move ecosystem are the same as those

in the Solidity ecosystem, but the implementation languages are different.

Therefore, there is a high possibility that the business logic loopholes in the

Solidity contract still exist in the Move contract. Therefore, Move developers

should pay attention to these loopholes that have appeared in Solidity

contracts when developing projects.

1.4 Unspecified use of require

The require in Solidity is designed to verify the external input of the function,

including the parameters input by the caller, the return value of the function,

the state change before and after the function execution, etc. If the use of

require cannot be standardized, the contract may have loopholes and even

threaten the security of digital assets, such as the XDXSwap security incident.

The incident occurred on July 2, 2021. The DeFi project XDXSwap on the

Huobi Ecological Chain (Heco) was attacked by a flash loan and lost about 4

million US dollars.

11

The fundamental reason is that the lightning loan function realizes the contract,

and there is a serious loophole in which the loan is not repaid, resulting in huge

losses. This is a serious loophole introduced when the project party forked the

Uniswap contract code and modified it, that is, the lack of a require statement

for K value verification. The most fundamental reason is the unfamiliarity of the

business, which leads to loopholes in the implementation.

In the Move contract, the assert statement and the spec module perform

functions similar to require. Similarly, many Solidity ecological projects,

including DEX, lending, farm and other types of projects, will appear in the

Move ecosystem in the future. The principle and mechanism of Move and

Solidity are different, but the business of the project is the same. In view of the

numerous pitfalls of Solidity ecological projects and the endless security

incidents, although Move has high security, it is still necessary to be cautious

when implementing various projects, and try to avoid the same type of

loopholes. I hope that the same pitfall will not be stepped on again.

2 Summary

At present, Move is still in the development stage, and the Move ecology is still

a certain distance from maturity. There are few developers and lack of

developer experience. Not many developers can really develop Move

contracts proficiently, so some loopholes at the business level are more likely

to occur. This requires the Move contract to be familiar with Move language

features and business during the design and development process, so that

business loopholes may be less likely to occur.

In addition, Solidity has implemented a large number of business types, such

as decentralized exchanges, decentralized lending, income aggregation,

leveraged lending, leveraged mining, flash loans, cross-chain transactions, etc.

These typical business scenarios need to be realized one by one in the Move

ecosystem, and the implementation plan needs to be redesigned based on the

12

differences between Move and Solidity. In this process, it is relatively easy to

have a loophole, just like Solidity has experienced many attacks and a large

amount of asset loss in the early days before it gradually matured. Although

Move is a highly secure language, no one can guarantee that there are no

loopholes. We hope that we can learn from the development process of

Solidity, so that the development of Move ecology can avoid detours, reduce

losses, and mature faster and more steadily.

About Us

Our vision is to improve security globally. We believe that by building this

security barrier, we can significantly improve lives around the

world.SharkTeam composes of members with many years of cyber security

experiences and blockchain, team members are based in Suzhou, Beijing,

Nanjing and Silicon Valley, proficient in the underlying theories of blockchain

and smart contracts, and we provide comprehensive services including threat

modeling, smart contract auditing, emergency response, etc. SharkTeam has

established strategic and long-term cooperations with key players in many

areas of the blockchain ecosystem, such as Huobi Global, OKX, polygon,

Polkadot, imToken, ChainIDE, etc

1

北 京 · 苏 州 ·南 京 · 广 州 · 成 都

https://t.me/sharkteamorg

https://twitter.com/sharkteamorg

https://sharkteam.org

https://shark

	1 Logical verification vulnerability
	1.1 Return value not verified
	1.2 Unverified related calculation data
	(2) Fortress Loans security incident
	1.3 Unverified function parameters
	1.4 Unspecified use of require

	2 Summary
	About Us

