A Vulnerability Perspective Analysis
of Move Language Security——

logic verification Vulnerability

Nov 18, 2022

@ SharkTeam

SharkTeam, a leading blockchain security service team, offers smart contract
audit services for developers. To satisfy the demands of different clients,
thesmart contract audit services provide both manual auditing and automated
auditing.

We implement almost 200 auditing contents that cover four aspects: high-level
language layer, virtual machine layer, blockchain layer, and business

logiclayer, ensuring that smart contracts are completely guaranteed and Safe.

@ SharkTeam

In the previous series of "Top 10 Smart Contract Security Threats", SharkTeam
summarized and analyzed the top 10 most harmful vulnerabilities in the field of
smart contracts based on historical smart contract security incidents.

These vulnerabilities usually appeared in Solidity smart contracts before, so
will the same harm exist for the emerging Move smart contracts?

SharkTeam [A Vulnerability Perspective Analysis of Move Language Security]
series of courses will discuss and deepen with you. The second lesson [Logic

verification Vulnerability].

SharkTeam's Series of Courses

A Vulnerability Perspective Analysis
of MOVELanguage Security

Chpater2:

1 Logical verification vulnerability

The business-related logic design of smart contract development is complex,
involving many economic calculations and parameters, and the composability
between different projects and protocols is extremely rich, difficult to predict,
and very prone to security vulnerabilities.

In Solidity smart contracts, we summarize four types of logic verification
vulnerabilities:

(1) The return value is not verified

(2) Unverified related calculation data formulas
2

@ SharkTeam

(3) Unverified function parameters

(4) Unregulated use of require verification

Similarly, we will analyze whether there are these logic verification loopholes in
the Move contract from these four aspects, as well as their possibility and

harm.

1.1 Return value not verified

If the return value of the message call is not checked, even if the called
function returns an abnormal value, the execution logic will still continue, but
the function call does not implement the correct logic, which will cause the
entire transaction to not get the correct result, or even It will threaten the
security of digital assets.

For example, the call function in the Solidity contract, the

functionCallWithValue function is as follows:

function functionCallWithValue(
address targett,
bytes memory datal,
uint256 valuel,
string errorMessage
) internal turns (bytes mem

re(address(this).balance >= value!, "Address: insufficient balance for call");
(bool success, bytes r returndata) = targett.call{value!: valuel}(datat);
return verifyCallResu Target(targetl, success, returndata, errorMessagetl);

The call function is called in the code. If there is an accident in the execution of
the call function, such as a transfer failure, the return value success is false. If
the return value is not verified, even if success is false, the transaction will still
be executed normally. It's just that this transfer in the transaction didn't work
out. Here, the success is verified by require, and if it is false, the transaction
will be rolled back (revert).

The call function is a key function of Solidity's dynamic function call, and it is a
typical representative of the Solidity language level that is prone to loopholes
due to return values. In addition to the call function, at the business level,

Solidity contracts often use return values to determine whether the function is
3

@ SharkTeam

executed successfully, such as the functions in the ERC20 contract:

IERC20 {
Approval (address owner, address i spender, uint value);
t Transfer(address i from, address inc o, uint value);

string mer
(string memo

For such functions, it is generally necessary to verify the return value during
practical application, otherwise loopholes will be generated, and even the
security of digital assets will be threatened.

In addition, according to the actual business logic, the function will return some
data required by the business. These data also need to be verified according
to the business to further ensure that no accidents occur in the function call,
including but not limited to the type, length, and range of the return value. For
example, in the above functionCallWithValue function, the
verifyCallResultFromTarget function is mobilized to verify the return value. It
not only checks the return value success, but also checks and processes the

length of retrundata.

function verifyCal sultFromTarget(
address targett,
bool successt,
bytes r returndatal,
string errorMessage
turns (bytes

Yy {
L

sContract(targetl), "Address: call to non-contract");

returndatal;

t(returndatal, errorMessagel);

From the language level in the Move contract, due to its static call
4

@ SharkTeam

characteristics, there is no situation similar to the call function in Solidity that
needs to verify the return value. Even if it is necessary to verify whether the
function is executed correctly, it is generally used in the spec module. The
specification language is verified in Move Prover, and the transaction will be
aborted if the verification fails.

From a business perspective, the spec module in the Move contract can also
verify the modification of the global data by the function. In addition, unit test
functions can be written in the contract to directly perform unit tests on
functions to ensure the correctness of function execution. Therefore, the
Boolean variable indicating whether the function execution is successful or not
is generally not used as the return value. Therefore, the return value of the
Move function is mostly actual business data. Whether it needs to be verified
or not needs to be determined according to the actual business needs. Test,
such as the liquidity function in DEX:

public fun liquidity<X: copy + drop + store,
Y: copy + drop + store>(signer: address): ul28 {
= TokenSwap: :compare_token<X, Y>();

Account::balance<LiquidityToken<X, Y>>(signer)
aleca [
} elLse 1

Account: :balance<LiquidityToken<Y, X>>(signer)

JL

The order of X and Y is different, and the balance that needs to be accessed is
also different, and order!=0 needs to be checked.

In general, the static call feature of the Move language, spec modules, and unit
tests have greatly improved the security of functions, which is much better than
Solidity. However, it does not rule out that the function will have a loophole
because the return value is not verified. Therefore, developers need to be
more familiar with business and implementation logic, and they need to be

cautious when developing.

@ SharkTeam

1.2 Unverified related calculation data

In the process of contract implementation for related businesses, considering
the situation is not comprehensive enough, the corresponding business
economics formulas and calculation data are not correctly verified, resulting in

poor fault tolerance of the contract for special calculation data. for example:

(1) XCarnival security incident

The incident occurred on June 24, 2022, when the NFT lending protocol
XCarnival was hacked, resulting in a loss of approximately $3.8 million.

The root cause is that the orderAllowed function called by the borrowAllowed
function of the controller contract is incomplete in the verification of the data
structure order. It only verifies that the order exists, the address is correct and
has not been liquidated. It does not verify whether the NFT in the order has
been withdrawn, even if the order The NFT in has been extracted, and the

order verification can still pass.

59~ function borrowfllowed({address xToken, uint256 orderId, address borrower, uint256 borrowAmount) external whenNotPaused(xToken, 3){
60 require(poolStates[xToken].islisted, "token not listed");

61

62 I:rde"ﬂllcr:ed(cr:er‘ld, borrower);

63

64 (address _cellection , ,)} = xNFT.getOrderDetail(orderId};

65

66 CollateralState storage _collateralState = collateralStates[_collection];

67 reguire(_collatera) '

68 requira(_collateral 45 - function orderAllowed(uint256 orderId, address borrower) internal view returns(address){ I"):
69 - 43 (address _collection , , address _pledger) = xNFT.getOrderDetail{orderId);

7@ address _lastXTokel 22 - - -

71 require(_lastXTokef 51 require({_collection != address(8) && _pledger != address(2)), "order not exist"};
72 i 52 require(_pledger == borrower, "borrower don't hold the order”);

73 {uint256 _price, bj 33 S - -

74 require(_price > @ 54 bool isLiquidated = xNFT.isOrder vidated(orderId};

75 5 55 require(!isliquidated, "order has been liquidated"});

76 // Borrow cap of 8 29 return _collection;

T if {poolstates[xTol ?Z 3

78 require(IXToken{xToken).totalBorrows().add({borrowimount) < poolStates[xToken].berrowCap, "pocl borrow cap reached™);
79 3

80

81 uint256 _maxBorrow = mulScalarTruncate{_price, _collateralState.collateralFactor);

B2 uint256 _mayBorrowed = borrowfmount;

83+ if {_lastXToken != address{@)){

B4 _mayBorrowed = IXToken(_lastXToken}.borrowBalanceStored(orderId).add(borrowfmount});

85

BE require(_mayBorrowsed <= _maxBorrow, "borrow amount exceed");

87

38~ if {_lastXToken == address{@)}){

89 orderDebtStates [orderId] = xToken;

58 3

91 }

(2) Fortress Loans security incident

The incident occurred on May 9, 2022. Fortress Loans was hacked and lost

1048.1 ETH and 400,000 DAI.

@ SharkTeam

The root cause is that although the submit function verifies the number of

signers, it does not verify the signer itself and the calculated data power.

114~ for (uint256 i = @; i < _keys.length; i++) {

115 requir‘e(uint224{_va1|Jes{i] == walues[i], "FCD overflow");

116 feds[_keys[i]] = FirstClassData{uint224(_values[i]), _dataTimestamp);

117 testimony = abi.encodePacked(testimony, _keys[il, _walues[i]);

118 ¥

119

128 bytes32 affidavit = keccak25e(testimony); modified state variables to update the price
121 uint256 power = 8;

122

123 uint256 staked = stakingBank.totalSupply();

124 address prevSigner = address(@xd);

1325

128 uint256 i = @;

127

128 ~ for (; 1 < w.length; i++) {

129 |address signer = recoverSigner{affidavit, w[i], _r[i], _s[i]);]

138 uint256 balance = stakingBank.balanceOf(signer);

131 \\\\‘

132 require(prevSigner < signer, "walidator included more than once");

133 prevSigner = signer; The number of signer is checked,

E‘; if (balance == @) continue; while the signer itself is not checked

136 emit LogVoter{lastBlockId + 1, signer, balance); ‘

137 |p0wer += balance; // no need for safe math, 1f we c-uer_‘.‘ic:ft".en we will not hove enocugh powe
138 t

139 !

148 |require{i »= requiredSignatures, "not enough signatures"j;l

141 / we turn on power once we hdve proper BFos

142 If require{powsr * 188 / stoked »= 66, "not enough power wags gatherec"');l

143

144 squashedRoots[lastBlockId + 1] = _root.makeSquashedRcot(_dataTimestampj;\ *
;32 BlacksCoumtads power is calculated only but not checked
147 emit LogMint{msg.sender, lastBlockId + 1, staked, power);

148 }

This allows the attacker to call the submit function to modify the state variable

fcds, and finally modify the price in the price oracle.

172 function getCurrentValues(bytes32[] calldata _keys)
173 - external view returns {(uwint256[] memory values, uint32[] memory timestamps) {
174 timestamps = new uint32[]{_keys.length);

175 values = new uint2S6[](_keys.length);

176

177 - for {uint i=8: i< kevs. Jeneth; js++) £

178 FirstClassData storage numericFCD = fcods[keys[i]]:
179 values[i] = vint256(numericFCD.value);

188 timestamps[1] = numericFCD.dataTimestamp;

181 }

182 3

ana

In the end, the attacker used this vulnerability to steal 1048.1 ETH and
400,000 DAI.

There are many similar security incidents, all of which are caused by the lack
of data structure for the economic model or the lack of verification of the
calculated data inside the function. This type of vulnerability is caused by the
fact that the project design and development did not take into account all the

circumstances, and its severity varies, and serious ones may even bring great

@ SharkTeam

economic losses to the project, just like the security incident above.

When the Move contract implements various projects, it is also difficult to
guarantee that such problems will not occur, especially for new projects. It is
hoped that these security incidents that occurred in the Solidity smart contract
can give Move developers some warnings, and try to avoid security holes as

much as possible during the development process.

1.3 Unverified function parameters

When a function receives parameters it does not automatically verify that the
input data attributes are safe and correct. Therefore, when the function is
implemented, the parameters need to be verified according to the business
needs. If the verification is missing and the latter verification does not meet the
business needs, it will cause loopholes and even threaten the security of digital
assets.

Take the Superfluid.Finance security incident as an example. The incident
occurred on February 8, 2022. The DeFi protocol Superfluid on Ethereum was
hacked and lost more than 13 million US dollars.

The root cause is that there are serious logic loopholes in the Superfluid
contract. The callAgreement function lacks verification of parameters, which
allows the attacker to replace the ctx data constructed by the contract with
custom ctx data, which provides an opportunity for the attacker to launch an

attack.

204

565 function _callAgreement(

566 gddress msgSender,

567 ISuperfgreement agreementClass,

563 bytes memory callData,

569 bytes memory userData

578)

571 internal

572 cleanCix

573 isAgreement(agreementClass)

574 returns(bytes memory returnedData)

575 4

576 /7 beaware of the endiness

577 bytes4 agreementSelector = CallUtils.parseSelector(callData);
578

579 //Build context data

S88 ~ bytes memory ctx = _updateContext(Context({

581 appLevel: isApp{ISuperApp{msgSender)} ? 1 : @,
582 callType: ContextDefinitions.CALL_INFO_CALL_TYPE_AGREEMENT,
583 7 3 e %7
S84 timestamp: block.timestamp,

585 msgSender: msgSender,

586 agreementSelector: agreementSelector,

587 userData: userData,

588 AllowanceGranted: @,

589 owancelanted: 8,

598 appAllowancellsed: @,

591 appiddress: address(8},

592 appAllowanceToken: ISuperfluidToken(address(@))
5493

594 ool success;

565 (success, returnedData) = _callExternallWithReplacedCtx(address(agreementClass), callData, ctx);
SG5 v if (!success) {

567 revert(CallUtils.getRevertMsg{returnedData});
598 }

549 /7 clear the stomp

688 _ctxStamp = 83

681 ¥

682

683 function callfgreement(

sa4 T5uperAgreement agreementClass,

685 bytes memory callData,

6856 bytes memory userData

687)

6588 external override

689 returns(bytes memory returnedData)

518 v i

611 return |_callAgreement(msg.sender, agreement{lass, callData, userData); |
512 3

613

In the development of Move contract, it is more necessary to verify the
parameters. In Move, the parameters of the function are not only the data
required by the business, but also the data required by the authority, such as
signer. Move does not have a global variable like msg.sender in Solidity. The
authentication of permissions in Move is realized through parameters. For

example the following function:
nt(
account: &signer,
dst_addr: address,
amount: u64,
MintCapStore {
account_addr = signer::addr

ts<MintCapStore>(account_addr),
error t_found (ENO_CAPABILITIES),

mint_cap = &borrow <MintCapStore>(account_addr).mint_cap;
coins_minted = coin::mint<AptosCoin>(amount, mint_cap);
:deposit<AptosCoin>(dst_addr, coins_minted

@ SharkTeam

The account parameter in this function is the originating account of token
casting, which must have the authority to mint coins, that is, MintCapStore,
similar to the msg.sender in Solidity must be the owner. If this part of the
verification is missing, the token can be minted by any account.

In addition, the types of projects in the Move ecosystem are the same as those
in the Solidity ecosystem, but the implementation languages are different.
Therefore, there is a high possibility that the business logic loopholes in the
Solidity contract still exist in the Move contract. Therefore, Move developers
should pay attention to these loopholes that have appeared in Solidity

contracts when developing projects.
1.4 Unspecified use of require

The require in Solidity is designed to verify the external input of the function,
including the parameters input by the caller, the return value of the function,
the state change before and after the function execution, etc. If the use of
require cannot be standardized, the contract may have loopholes and even
threaten the security of digital assets, such as the XDXSwap security incident.
The incident occurred on July 2, 2021. The DeFi project XDXSwap on the
Huobi Ecological Chain (Heco) was attacked by a flash loan and lost about 4

million US dollars.

File 1 of 8 - UniswapV2Pair so

198

199 JF this L vel function should be called from a contract which performs important safety checks)
208 - function swep(uint amount®0ut, uint amountlOut, address to, bytes calldsts data) external lock {
281 require{amount80ut > @ || amountlOut > @, "UniswapV2: INSUFFICIENT_OUTPUT_AMOUNT');

282 {uintll2 _reserved, uintll? _reservel,) = getReserves(); // gas savings

203 require{amount@0ut < _reserve® 8% amountlOut < _reservel, 'UniswspV2: INSUFFICIENT_LIQUIDITY');
2a4

285 uint balanced;

286 uint balancel;

287 { // scope for _token{®,1}, avoids stack too deep errors

208 address _token2 = tokend;

209 address _tokenl = tokenl;

218 require{to != _tokend® &% to != _tokenl, 'UniswapV2: INVALID TO');

211 if (smount@Out > @) _safeTransfer{_token®, to, amount@Out); // op

212 if (smountlOut > ©) _safeTransfer(_tokenl, to, amountlOut); // op

213 if a.length » 8) IUniswapV2Callee(to).uniswapV2 {

214 balance® = IERC28Uniswap(_tokend).balanceOf(address

215 balancel = IERC20Uniswap(_tokenl).balanceOf(address

216 b

217 uint amount®In = balanced » _reserve@ - amount@Out ¥ balance@ - (_|

218 iint amountlIn » _reservel - amountlCOut ? balancel -

219 { amountlIn > @, "Uniswap'

228

221

222

223 | Un apli2 I
224

225

226 _update({balanced, balancel, _reserved, _reservel);

227 emit Swap(msg.sender, amount®In, amountlIn, amountBOut, amountlOut, to);

228 ¥

279

10

@ SharkTeam

The fundamental reason is that the lightning loan function realizes the contract,
and there is a serious loophole in which the loan is not repaid, resulting in huge
losses. This is a serious loophole introduced when the project party forked the
Uniswap contract code and modified it, that is, the lack of a require statement
for K value verification. The most fundamental reason is the unfamiliarity of the
business, which leads to loopholes in the implementation.

In the Move contract, the assert statement and the spec module perform
functions similar to require. Similarly, many Solidity ecological projects,
including DEX, lending, farm and other types of projects, will appear in the
Move ecosystem in the future. The principle and mechanism of Move and
Solidity are different, but the business of the project is the same. In view of the
numerous pitfalls of Solidity ecological projects and the endless security
incidents, although Move has high security, it is still necessary to be cautious
when implementing various projects, and try to avoid the same type of

loopholes. | hope that the same pitfall will not be stepped on again.

2 Summary

At present, Move is still in the development stage, and the Move ecology is still
a certain distance from maturity. There are few developers and lack of
developer experience. Not many developers can really develop Move
contracts proficiently, so some loopholes at the business level are more likely
to occur. This requires the Move contract to be familiar with Move language
features and business during the design and development process, so that
business loopholes may be less likely to occur.

In addition, Solidity has implemented a large number of business types, such
as decentralized exchanges, decentralized lending, income aggregation,
leveraged lending, leveraged mining, flash loans, cross-chain transactions, etc.
These typical business scenarios need to be realized one by one in the Move
ecosystem, and the implementation plan needs to be redesigned based on the

11

@ SharkTeam

differences between Move and Solidity. In this process, it is relatively easy to
have a loophole, just like Solidity has experienced many attacks and a large
amount of asset loss in the early days before it gradually matured. Although
Move is a highly secure language, no one can guarantee that there are no
loopholes. We hope that we can learn from the development process of
Solidity, so that the development of Move ecology can avoid detours, reduce

losses, and mature faster and more steadily.

About Us

Our vision is to improve security globally. We believe that by building this
security barrier, we can significantly improve lives around the
world.SharkTeam composes of members with many years of cyber security
experiences and blockchain, team members are based in Suzhou, Beijing,
Nanjing and Silicon Valley, proficient in the underlying theories of blockchain
and smart contracts, and we provide comprehensive services including threat
modeling, smart contract auditing, emergency response, etc. SharkTeam has
established strategic and long-term cooperations with key players in many
areas of the blockchain ecosystem, such as Huobi Global, OKX, polygon,

Polkadot, imToken, ChainlIDE, etc

12

a

In Math, We Trust!

@ https://sharkteam.org

4 https://t.me/sharkteamorg

, https://twitter.com/sharkteamorg

https://shark

	1 Logical verification vulnerability
	1.1 Return value not verified
	1.2 Unverified related calculation data
	(2) Fortress Loans security incident
	1.3 Unverified function parameters
	1.4 Unspecified use of require

	2 Summary
	About Us

