
A Vulnerability Perspective Analysis

of Move Language Security——

Reentrancy Attacks and Permission

Vulnerabilities

Nov 14, 2022



1

SharkTeam, a leading blockchain security service team, offers smart contract

audit services for developers. To satisfy the demands of different clients,

thesmart contract audit services provide both manual auditing and automated

auditing.

We implement almost 200 auditing contents that cover four aspects: high-level

language layer, virtual machine layer, blockchain layer, and business

logiclayer, ensuring that smart contracts are completely guaranteed and Safe.



2

In the previous series of "Top 10 Smart Contract Security Threats", SharkTeam

summarized and analyzed the top 10 most harmful vulnerabilities in the field of

smart contracts based on historical smart contract security incidents.

These vulnerabilities usually appeared in Solidity smart contracts before, so

will the same harm exist for the emerging Move smart contracts?

SharkTeam [A Vulnerability Perspective Analysis of Move Language Security]

series of courses will discuss and deepen with you. The first lesson

[Permission Vulnerabilities and Reentrancy Attacks].

1 Permission vulnerability

A permission vulnerability refers to a flaw in the application's authorization

check, which allows an attacker to bypass the permission check by using

some methods to access or operate other users or higher permissions after

obtaining a low-privileged user account.

Permission loopholes in smart contracts are related to critical logic, such as

minting tokens, withdrawing funds, changing ownership, etc.

In Solidity contracts, permission vulnerabilities mainly include the following

types:



3

• Function default visibility

• Lack of modifier validation or validation errors or loopholes

• tx.origin authentication

• Initialization function problem

• call self-destruct (selfdestruct)

1.1 Functions are visible by default

In Solidity, there are 4 kinds of permissions for functions, namely: private,

internal, external and public.

private: private function, only visible inside the current contract, invisible to

transactions, other contracts and derived contracts, only supports internal calls

of the current contract;

internal: internal function, only the current contract and derived contracts are

visible, transactions and other contracts are not visible, only the internal calls

of the current contract and derived contracts are supported;

external: external functions, only other contracts and transactions are visible,

the current contract and derived contracts are not visible, only other contracts

and external calls that initiate transactions are supported;

public: public functions, visible to all accounts, including transactions, other

contracts, current contracts, derived contracts (contracts that inherit the

current contract), support other contracts and external calls to initiate

transactions, and internal calls of current contracts and derived contracts.

If a function in a contract in Solidity does not declare visibility, it defaults to

public, that is, all accounts are visible and have the highest authority. If it is not

set properly, the functions that should be set as internal/private will become

public functions by default, which will bring great threats to the contract, and

even threaten the asset security and key business of the contract.

Compared with Solidity, the Move function has richer and more flexible visibility,

including public, entry/script, friend and private.



4

private: The current Module is visible, and only functions in the current

module can be called;

public(friend): Module-level restrictions, only the current module and friend

modules are visible, and can only be called by functions in the current module

and friend modules;

public: visible to all modules and scripts, can be called by any function

defined in any module and script, and cannot be used for transactions;

entry/public(script): Visible to all modules and scripts, can be called by any

function defined in any module and script, and can also be used as an entry for

transactions.

The function visibility in Move is private by default, which well protects the

privacy of functions and is more secure than Solidity. Although the default

visibility of the Move function is security, because the visibility of Move is more

flexible, it is also necessary to guard against the risk of incorrect visibility

declaration.

1.2 Lack of modifier validation or validation errors or

loopholes

Solidity functions use the keyword modifier to declare some permission

requirements for calling the function. When calling a function, the caller needs

to satisfy the permissions specified in modifier to be able to call the function. If

the modifier verification conditions are missing or there are errors or loopholes

in the verification conditions, this allows the caller to bypass the permission

verification to call the function, which will bring certain threats to the contract

and assets.

Although the Move contract has no modifier, it also requires specific

permission verification. For example, the Move function uses the acquires key

to declare that the resource has been acquired. In addition, the verification of

some permissions in Move is written in the Move specification language. All of



5

these may bring certain risks to the Move contract.

1.3 tx.origin authentication

Solidity contracts have the concept of contextual calls, including tx.origin and

msg.sender.

• tx.origin represents the original caller, usually the address of EOA;

• msg.sender represents the current caller, usually obtains the address of

the upper-level caller, which can be the EOA address or the contract

address.

The contract uses the global variable tx.origin as the authentication credential,

which is easy for attackers to trick the owner into signing the attack transaction

through social engineering, thereby bypassing the owner authentication.

The Move contract has no concept of contextual invocation. The Move contract

function is called directly through the address, module name, and function

name, and there is no concept of the caller. The calling permissions of

functions are also set through function visibility, without the need to carefully

verify the identity of the caller. Therefore, there is no such vulnerability in

Move.

1.4 Initialization function problem

In Solidity, the initialization function does not limit the caller or the number of

times, and it is easy to be called by an attacker to customize the state variables.

On the surface, the attacker just took advantage of the vulnerability of the

initialization function and modified the state variable. The underlying fact is the

modification permission vulnerability of state variables, that is, state variables

can be modified, and the function of modifying state variables can be exploited

by attackers to steal digital assets in the contract.

From this point of view, Move is safer than Solidity, because the digital assets

in Move are unique resource types that cannot be arbitrarily modified or lost,



6

let alone copied. In addition, the resources in Move can only be modified by

the module that created it, and the resources saved in the user account can

only be modified by the user.

1.5 Calling selfdestruct

The selfdestruct(address payable addr) function in the Solidity contract can

destroy the current contract and send the balance of the current contract to the

specified address addr. Therefore, if there is no permission limit when calling

selfdestruct, any account can call this function to destroy the contract, causing

huge losses of the remaining Tokens in the contract, and further causing

contract denial of service attacks, which will cause serious consequences.

In contrast, there is no function with self-destruction function in the Move

contract, so there is no such vulnerability in Move.

Although Move does not have a self-destruction function, resources in Move

can be destroyed. Each resource in Move represents a digital asset, and every

wrong destruction of an asset is a huge loss. The unprovoked destruction of

resources will bring security risks to the contract and users. Therefore, it is

necessary to strictly control the destruction authority of Move resources and

cut off the possibility of arbitrary destruction of resources.

2 Reentrancy Attack

Reentrancy, literally, means that during the function call process, the current

function is called again, that is, the execution re-enters the current function.

Solidity is a dynamic language, and after calling the call function, an unnamed

callback function fallback is executed, which can be a custom function. These

features provide conditions for reentrancy. From this perspective, reentrancy is

not a vulnerability. Dynamic invocation and even reentrancy make Solidity

smart contracts flexibly implement some special services in DeFi, such as

flash loans.



7

Taking the flash loan of Uniswap V2 as an example, its implementation

principle is to transfer money first in the swap function, then dynamically call

the business function, and finally repay (including handling fees), and check

the repayment amount through K value verification, so as to ensure that the

balance is satisfied Consistency of economic models and contract states.

If the flash loan business has a demand for token exchange, and then the

business function calls the swap function again, reentrancy occurs during the

function call process. If there is no additional profit, it should not be a

reentrancy attack, because this is only to meet the actual business needs.

The actual situation is that it is difficult to define whether a reentrancy is an

attack, because reentrancy can easily break the atomic operation of "calling

external functions and modifying state variables". Therefore, the swap function

uses modifier lock to prevent reentrancy.

From this point of view, the root cause of reentrancy attacks is that the atomic

operation of "calling external functions and modifying state variables" is



8

destroyed when reentrancy calls external functions, such as calling external

functions twice, but only modifying state variables once.

Therefore, for reentrancy vulnerabilities, we have a suggestion to adopt the

"check-validate-interaction" mode, that is, modify the state variable first, and

then execute the external function call, which can ensure that the state

variable will be modified every time the external function is called.

But in practice, it is possible to do this for simple functions, such as the function

that only calls the external function once and modifies the state variable once.

If the function is very complex, including multiple external function calls, and

the business related to the state variable update check is also very complex,

this solution is not so effective, and developers need to use other methods to

defend against reentrancy attacks. For example, adding an anti-reentrancy

lock does not allow function reentrancy at all.

If from the perspective of the root cause, we can consider all transactions that

obtain additional benefits by breaking the atomicity of "calling external

functions and modifying state variables" as reentrancy attacks, then function

reentrancy is just for reentrancy attacks a possibility offered. Next, let's

consider what role dynamic calls play in reentrancy attacks?

What is a dynamic call? How is it different from static calls?

In a Solidity contract, the call of an external function (call) is determined by the

address of the calling contract and the function signature (methodId) of the

calling function, and is executed in the context of the function during execution,

and the contract before execution is compiled. At this stage, the code of the

external contract will not be loaded and compiled. At this time, the external

function call has only one contract address and function signature, and its

calling logic is dynamically unknown. It will only be dynamically determined

according to the actual passed parameters during execution. The actual

function to be executed, that is, the passed parameters are different, and the



9

executed function is different.

In contrast, static calling is to load and compile each function during the

compilation process, and the execution method and logic of the entire function

are statically known.

For a dynamically executed function call, only when it is actually executed can

it be truly determined whether its logic destroys the atomicity of "calling

external functions and modifying state variables". Until then, it is impossible to

check and determine.

This situation may also occur with static calls, but it can be checked before

compilation and compilation. The more fundamental reason is that there are

loopholes in the contract business logic, which leads to the destruction of

"calling external functions and modifying state variables" atomicity problem.

This situation is very easy to detect.

In addition, Solidity will execute the callback function fallback() after

dynamically calling the external function. The callback function can be

customized. This reentrancy attack provides the necessary conditions.

Comparing dynamic calls and static calls, we conclude the following

conclusions:

Dynamic invocation is a necessary condition for reentrancy attacks, and

reentrancy attacks are possible only when the contract is executed

dynamically.

In statically called contracts, reentrancy attacks will not occur, but there may

be similar business implementation vulnerabilities, but they are no longer

reentrancy vulnerabilities.

Through the above analysis, we reorganize the concept of reentrancy attack,

as follows:

Re-entrancy attacks in smart contracts refer to the fact that attackers use the

characteristics of dynamic calling of external functions to destroy the atomicity



10

of "calling external functions and modifying state variables" by customizing

callback functions, thereby obtaining additional income attacks.

Move is a statically called language and does not support the callback function

fallback(), so reentrancy attacks are impossible in the Move contract, but this

does not mean you can sit back and relax. Through the above analysis,

although Move does not have the conditions for launching reentrancy attacks,

there may be business logic vulnerabilities with similar reasons. Although such

vulnerabilities are relatively low-level and easy to be discovered, they may still

exist, especially for beginners. and careless developers. The uniqueness and

storage characteristics of Move resources can also avoid some asset losses

caused by business loopholes to a certain extent.

The Move resource is unique. The Move Token is a type of structure that

represents a resource in which the amount of tokens is kept. Quantity is a

value type, a specified number of tokens are resources, and the issuance of

tokens is based on resource-type tokens as atomic units, which cannot be

minted, destroyed, or copied at will. The token transfer of Move is like a simple

numerical addition and subtraction in Solidity. The most important thing about

Move token is to realize the transfer through the minting and destruction of

resources.

Move's token resources are stored in the user's personal account after minting,

and only the user has the right to dispose (transfer, etc.) these token resources.

In Solidity contracts, the token balance is a value stored in a state variable in

the token contract, and these tokens can be copied and transferred if the

contract has loopholes.

It can be seen that the Move language ensures the security of user assets

from multiple levels.

3 Summary

At present, Move is still in the development stage, and the Move ecosystem is



11

still far from maturity. There are few developers, and the developers are

inexperienced. There are not many people who can really proficiently develop

Move contracts, so it is more prone to some loopholes at the business level.

This requires that the Move contract must be familiar with the Move language

features and business during the design and development process, so as to

avoid business loopholes.

In addition, Solidity has implemented a large number of business types, such

as decentralized exchanges, decentralized lending, income aggregation,

leveraged lending, leveraged mining, flash loans, and cross-chain transactions.

These typical business scenarios need to be implemented one by one in the

Move ecosystem, and the implementation plan needs to be redesigned based

on the differences between Move and Solidity. In this process, it is relatively

easy to have some vulnerabilities, just like Solidity has experienced many

attacks and losses of a large number of assets in the early days before it

gradually matured. Although Move is a highly secure language, no one can

guarantee that there will be no loopholes. We hope that we can learn from the

development process of Solidity, so that the development of the Move ecology

will take less detours and less losses, and move towards maturity faster and

more steadily.

About Us

Our vision is to improve security globally. We believe that by building this

security barrier, we can significantly improve lives around the

world.SharkTeam composes of members with many years of cyber security

experiences and blockchain, team members are based in Suzhou, Beijing,

Nanjing and Silicon Valley, proficient in the underlying theories of blockchain

and smart contracts, and we provide comprehensive services including threat

modeling, smart contract auditing, emergency response, etc. SharkTeam has



12

established strategic and long-term cooperations with key players in many

areas of the blockchain ecosystem, such as Huobi Global, OKX, polygon,

Polkadot, imToken, ChainIDE, etc



1

北 京 · 苏 州 ·南 京 · 广 州 · 成 都

https://t.me/sharkteamorg

https://twitter.com/sharkteamorg

https://sharkteam.org

https://shark

	1 Permission vulnerability
	1.1 Functions are visible by default
	1.2 Lack of modifier validation or validation erro
	1.3 tx.origin authentication
	1.4 Initialization function problem
	1.5 Calling selfdestruct

	2 Reentrancy Attack
	3 Summary
	About Us

